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Abstract: We present a study on lung squamous cell carcinoma diagnosis using quantitative 
TI-DIC microscopy and a deep convolutional neural network (DCNN). The 2-D phase map of 
unstained tissue sections is first retrieved from through-focus differential interference contrast 
(DIC) images based on the transport of intensity equation (TIE). The spatially resolved 
optical properties are then computed from the 2-D phase map via the scattering-phase 
theorem. The scattering coefficient ( Sμ ) and the reduced scattering coefficient ( '

Sμ ) are 

found to increase whereas the anisotropy factor (g) is found to decrease with cancer. A 
DCNN classifier is developed afterwards to classify the tissue using either the DIC images or 
2-D optical property maps of Sμ , '

Sμ  and g. The DCNN classifier with the optical property 

maps exhibits high accuracy, significantly outperforming the same DCNN classifier on the 
DIC images. The label-free quantitative phase microscopy together with deep learning may 
emerge as a promising approach for in situ rapid cancer diagnosis. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
The morbidity and mortality rate of lung cancer is the highest among all cancers, both in term 
of new cases (2.09 million cases, 11.6% of total) and deaths (1.76 million deaths, 18.4%) 
among the 18.07 million new cancer cases and 9.55 million cancer deaths occurred in 2018 
worldwide [1]. Squamous cell carcinoma approximately accounts for 30% in all lung cancers 
[2]. Pathological examination of excised tissue sections is currently the gold standard for 
cancer diagnosis. Traditional pathological diagnosis requires time-consuming multi-step 
tissue preparation and is not suitable for rapid diagnosis. It also suffers from the inter- and 
intra-observer variance due to its subjective nature. 

During the past two decades, much efforts have been devoted to developing label-free 
optical techniques for in situ rapid diagnosis of cancer. Both quantitative phase imaging and 
tissue native fluorescence have shown great potential [3–9]. Recently, deep learning [10] has 
demonstrated significant potential in tissue imaging and diagnosis. Liu et al. and Wang et al. 
have designed deep convolutional neural networks (DCNN) to discriminate cancer and 
normal hematoxylin and eosin (H&E) stained pathological sections [11,12]. A DCNN 
classifier has also been developed to classify excised squamous-cell carcinoma, thyroid 
cancer, and normal head and neck tissue samples based on Hyperspectral Imaging (HSI) [13]. 
It was used to implement and classify the spectral patches as either normal or cancer [13]. 
The spatial structural information contained in HSI was, however, discarded. 

Light scattering by cells or tissues has important applications in disease diagnosis as the 
wavelength of light in the visible and near-infrared wavebands is close to the characteristic 
scale of the structures in cells and tissues [3–5,14]. Light scattering can reveal the changes in 
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the morphology, composition and physiological state and has been successfully used in 
detecting the sub-wavelength scale morphological and biochemical changes in tissues [15–
18]. Phase imaging has been widely used to probe the microstructure changes in thin 
specimens. Compared to other phase-imaging techniques, the differential interference contrast 
(DIC) microscope stands out owing to its better depth discrimination and the pseudo-3D relief 
type of image being clear of artifacts. However, the resulting image of commercial DIC 
microscope cannot be used directly for quantitative analysis because the image intensity is not 
linearly proportional to the phase information. Kou et al. found that by taking a through-focus 
series of images and with the transport-of-intensity equation (TIE), quantitative phase image 
can be retrieved from DIC microscope images [19–22]. This TI-DIC approach is robust and 
requires no or minimal hardware modifications. 

In this paper, we performed a study on lung cancer diagnosis using the TI-DIC method 
together with the scattering-phase theorem that we reported before [20,23]. Two-dimensional 
quantitative phase maps from 77 normal lung cases and 129 squamous cell lung cancer cases 
were first obtained with TI-DIC. The spatially resolved optical properties were then computed 
from the 2-D phase map via the scattering-phase theorem. A significant correlation between 
the light scattering parameters of normal and cancerous lung tissue was observed, Sμ  and '

Sμ  

increasing whereas g decreasing with cancer. A DCNN was then designed to classify lung 
tissue with the 2-D maps of the optical scattering parameters Sμ , '

Sμ  and g, and the original 

in-focus DIC images, respectively. The diagnosis with the DCNN classifier exhibits an 
accuracy of 96% to discriminate normal vs cancerous lung tissue using the 2-D maps of 
optical scattering parameters Sμ , '

Sμ  and g, significantly outperforming the same DCNN 

classifier on the DIC images. The potential of quantitative phase microscopy with the aid of 
DCNN for cancer diagnosis is discussed at the end. 

2. Materials and methods 

2.1 TI-DIC microscopy 

TI-DIC has been presented elsewhere [19,21]. Here the principle of TI-DIC together with the 
phase-scattering theorem is briefly outlined. As the consequence of free-space Helmholtz 
wave equation under the paraxial approximation, TIE relates the phase to the intensity of the 
wavefront. The phase of the wave immediately after transmission through a thin weakly 
scattering sample satisfies [21]: 

 [ ( , , ) ( , , )]
I

I x y z x y z k
z

ϕ⊥ ⊥
∂∇ ∇ = −
∂
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where k is the wave number, the terms ( , , )I x y z , ( , , )x y zϕ , and /I z∂ ∂  denote the in-focus 

image intensity, the phase to be retrieved, and the longitudinal derivative of the intensity, 
respectively. The 2-D gradient operator ⊥∇  operates on the transverse direction alone. By 

applying Fourier transform, the phase on the in-focus plane is obtained as following [21]: 
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z
ϕ
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where ( , )q x y ,   and 1−  are the transverse spatial frequency, symbols representing 

Fourier transform and inverse Fourier transform, respectively. The term ln /I z∂ ∂  can be 
approximated by a finite difference of two measurements displaced by a small separation z.Δ  
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The scattering-phase theorem [23] is then applied to determine Sμ , '
Sμ  and g from the 

measured phase map. The relationship between Sμ , '
Sμ , g and the 2-D phase map (φ) is given 

by the following formulas [23]: 
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originating from the anomalous diffraction by the forward-peaked scattering of the thin 
specimen. Here L is the thickness of the specimen,   means the spatial average, 

ϕ ϕ ϕΔ = −   , and ( ) ( )2 2 2
/ /x yϕ ϕ ϕ∇ = ∂ ∂ + ∂ ∂ . The scattering-phase theorem is applicable 

to a slice of homogeneous or inhomogeneous medium. In the latter case, a map of Sμ , '
Sμ  

and g can be computed from the phase map using spatial averaging over local regions rather 
than the whole slice. 

2.2 Experimental setup and validation 

The system was built on a commercial DIC microscope (Observer A1, Zeiss). The light 
source was a Halogen 100W lamp filtered by a (550 ± 5) nm narrow-band filter under Köhler 
illumination. The numerical aperture for the condenser and objective (Plan-Neofluar 40× ) 
were 0.3 and 0.75, respectively. The pixel size for the recorded images was 0.082µm using a 
CCD camera from Zeiss (AxioCam ICC5). A three-dimensional scanning stage with a z-
encoder (Pro Scan Ш, Prior) was used to take in-focus and out-of-focus images ( zΔ = 1µm) 
automatically. 

To validate the performance and stability of the system, we first measured the light 
scattering properties of polystyrene spheres and compared the results with the theoretical 
prediction obtained by Mie theory. The polystyrene spheres (10µm in diameter) suspension 
was diluted with water and deposited on a glass microscope slide and covered with a slide 
cover. Three images, one in-focus and two out-of-focus, were taken for the monolayer of 
polystyrene sphere suspension. The out-of-focus images were taken on planes with 1µm 
distance below and above the in-focus plane. The quantitative phase map of the polystyrene 
sphere suspension was retrieved by the TI-DIC algorithm. The scattering properties for each 
individual sphere were analyzed by applying the scattering-phase theorem to the region in the 
phase map being occupied by the sphere. Original image, the retrieved phase map, and the 
scattering properties of the sphere were shown in Fig. 1. The scattering coefficient, the 
reduced scattering coefficient and the anisotropy factor obtained were Sμ  = 0.208 µm−1, '

Sμ  

= 0.0182µm−1, and g = 0.913, respectively. The results were in good agreement with 
theoretical prediction ( Sμ  = 0.230 µm−1, '

Sμ  = 0.0210µm−1, and g = 0.909) computed with a 

Mie code. 
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Fig. 1. Imaging 10µm polystyrene spheres. (a) The original image obtained on the focus plane; 

(b) the retrieved 2-D phase map; (c) the reduced scattering coefficient '

S
μ  (µm−1); (d) the 

anisotropy factor g. 

2.3 Machine training and prediction 

2.3.1 Data pre-processing 

The data set contained 77 normal lung cases and 129 squamous cell lung cancer cases. A 
three-channel data cube of the optical scattering properties (size: 1722 1722 3× × ) was 

obtained by stacking the 2-D map of Sμ , '
Sμ  and g for each case. 

Before training, the data set of 206 images (129 cancer cases and 77 normal cases) needs 
to be expanded. All images were divided into 9 sub-images (size: 574 574 3× × ) whose 
dimension corresponds to about 16 lung cells, enlarging the image number from 206 to 1854. 
Sub-images at this scale have sufficient information for pathological diagnosis. The 1854 
downsized images were then randomly split into 3 parts: 928 images as the train data set, 463 
images as the validation data set, and 463 images as the test data set. The training data set 
included 581 images of cancer cases and 347 images of normal cases, and the proportion of 
the two cases in the validation data set and test data set was the same as the training data set. 
Among them, the train data set was used to train classifier; the validation data set was used to 
adjust the hyperparameters during the training process, and the test data set was used to test 
the classifier independently. The same procedure was also applied to through-focus DIC 
images. 

2.3.2 Data augmentation 

After data preprocessing, the downsized images (size: 574 574 3× × ) in the train and 
validation sets were augmented by 16 times through extracting random 512 512 3× ×  patches 
from the downsized images. In addition, each cropped patch underwent horizontal flipping, 
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Table 1. The output and parameters of the DCNN. 

Parameter layers Output Kernel Size Stride Pad Dropout ratio 
Data (3, 512, 512)     
Conv1 (96, 126, 126) 11 4 0  
Pool1 (96, 63, 63) 3 2 0  
Conv2 (128, 63, 63) 5 1 2  
Pool2 (128, 31, 31) 3 2 0  
Conv3 (256, 31, 31) 3 1 1  
Conv4 (256, 31, 31) 3 1 1  
Conv5 (128, 31, 31) 3 1 1  
Pool5 (128, 15, 15) 3 2 0  
Conv6 (128, 15, 15) 3 1 1  
Pool6 (128, 7, 7) 3 2 0  
Fc1 (2048)    0.5 
Fc2 (1024)    0.5 
Fc3 (2)     

3. Results 

3.1 DIC images and scattering characteristics of lung tissue 

After validation, tissue microarrays of squamous cell lung cancer and normal lung tissue were 
imaged. The tissue microarrays (one stained and two accompanying unstained slides, Biomax 
Inc.) include pathology diagnosis information of grades, stages, and TNM grading. We first 
identified the characteristic location for each case using the H&E stained slide under the 
bright-field mode. The DIC images of in-focus and out-of-focus of the unstained slides were 
then taken at the corresponding location for each ease, from which the 2-D phase maps and 
the scattering properties were computed. The typical Sμ , '

Sμ  and g maps and the original DIC 

images of normal lung tissue and squamous cell lung cancer were illustrated in Fig. 3 and Fig. 
4, respectively. The histograms of the optical properties (see Fig. 5) and the table of the 
average values of the optical properties (see Table 2) show that lung squamous cell carcinoma 
has strong correlation with Sμ , '

Sμ  and g. With the progress of carcinogenesis, the scattering 

coefficient and the reduced scattering coefficient are found to increase, while the anisotropy 
factor is found to decrease. 

 

Fig. 3. Normal lung tissue. (a) The original image obtained on the focus plane; (b) the retrieved 
2-D phase map; (c) the gradient of phase map; (d) the scattering coefficient Sμ  (µm−1); (e) the 

reduced scattering coefficient '
Sμ  (µm−1); and (f) the anisotropy factor g. 
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Fig. 4. Squamous cell lung cancer tissue. (a) The original image obtained on the focus plane; 
(b) the retrieved 2-D phase map; (c) the gradient of phase map; (d) the scattering coefficient 

Sμ  (µm−1); (e) the reduced scattering coefficient '
Sμ  (µm−1); and (f) the anisotropy factor g. 

 

Fig. 5. Histogram of the scattering coefficient Sμ , the reduced scattering coefficient '
Sμ , and 

the anisotropy factor g. 

Table 2. The average scattering parameters of normal and cancerous lung tissue. 
Number inside parenthesis represents the standard deviation among measured cases. 

Scattering Parameter Normal tissue Cancer tissue P value 

µs (µm−1) 0.198(0.015) 0.254(0.015) 7.21 × 10−5 

µs' (µm−1) 0.0013(4 × 10−5) 0.0029(2 × 10−4) 6.06 × 10−13 

g 0.993(0.009) 0.985(0.003) 0.0063 

3.2 Classification with DCNN 

In DCNN, the train loss, the test (validation) loss, and the test accuracy (the accuracy of the 
test data set) were calculated every 0.1 epoch during the process of training. Figure 6 displays 
the progress during the training operating on the in-focus DIC images and the optical property 
maps, respectively, without and with data augmentation. The varying behavior of the training 
loss during training in Fig. 6 occurs mainly inside each epoch and disappears when restricted 
to integer epochs (each epoch means the SGD optimization has iterated through the whole 
training data set once). 
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Fig. 6. The train loss, the test loss, and the test accuracy of DCNN in training for the in-focus 
DIC images and the 2-D optical property maps, without or with data augmentation. 

A ROC (Receiver Operating Characteristic) curve was then utilized to assess the 
performance of classifier. The ROC curves were plotted in Fig. 7 for DCNN on DIC images 
and 2-D scattering parameter maps with data augment (green) and without data augment 
(red), respectively. 

 

Fig 7. The Receiver Operating Characteristic curves of DCNN on the 2-D scattering parameter 
maps (Left) and the in-focus DIC images (Right) with and without data augmentation. 
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Accuracies and AUC (Area Under the Curve) of DCNN were shown in Table 3. 

Table 3. Test accuracy and AUC of DCNN evaluated with the test data set. 

 Accuracy (%) AUC (%) 

In-focus DIC images 82.9 76.6 
In-focus DIC images with Data 
Augmentation 

87.1 91.7 

2-D images of optical parameters 94.2 92.7 
2-D images of optical parameters 
with Data Augmentation 

95.7 96.8 

4. Discussion 
The results (see Fig. 5 and Table 2) show that scattering properties differ significantly 
between normal and cancerous lung tissue. The alterations of the scattering properties are 
related to the microstructure alterations when cancer progresses. The scattering coefficient 

S( )μ  and the reduced scattering coefficient '
S( )μ  reflect the total and weighted scattering 

strength of tissue. Both Sμ  and '
Sμ  are observed to increase steadily from normal to cancer. 

The decreasing of the anisotropy factor with cancer suggests an overall fragmentation of 
structures in tissue with cancer progression [3–5]. TI-DIC microscopy together with the 
scattering-phase theorem is effective in quantifying the microstructural alterations in tissue. 
The classification performance from the DCNN suggests that the classifier using the 2-D 
images of optical parameters is superior to that using the raw DIC images. 

The DCNN has potential to be applied in the automatic labeling of cancer and normal 
tissue using the 2-D optical properties images. Data augmentation technique and drop out 
were used to avoid over-fitting and achieve a more robust network. One straightforward way 
of improving the performance of deep neural network is to increase their size such as the 
depth – the number of levels of the network and its width–the number of units at each level 
with a potential tradeoff of overfitting [26]. We design our DCNN on the basis of this 
principle. The designed deep neural network contains six convolution layers and three full 
connection layers. Data augment technique and drop out ratio (0.5) were implemented to 
avoid over-fitting. Comparing the train loss and test loss curves in Fig. 6 clearly shows the 
alleviation of overfitting with data augmentation vs without data augmentation. Even with 
data augmentation, the test loss curve for DCNN on the 2D scattering parameters was 
observed to decline initially, increase between the 3rd and 5th epoch, and then level off. We 
can early terminate at the 3rd epoch when the test loss reaches its minimum value. The AUC 
at this terminated point is found to be 96.8%, identical to the value reached by keeping 
training until the test loss is stable. 

In the field of traditional machine learning, Support Vector Machine (SVM) is one of the 
most widely used and successful classifiers. The accuracy of SVM in the classification of 
cancer images, such as breast cancer [18,27], lung cancer [28], head and neck cancer [13], is 
usually about 85%-92%. We have also applied SVM to the same data set with a 4-fold cross 
validation. The features including energy, contrast, entropy, correlation and texture mean are 
extracted by the Gray-level Co-occurrence Matrix method (GLCM) [29]. The parameters 
including the penalty parameter and the kernel parameter in SVM are iteratively optimized. 
The accuracy of SVM classification is found to be 71%. The total computational time is 
around 32 hours using a 2 GHz CPU. Thus, the classifier of DCNN performs much better 
than SVM. The outperformance of DCNN may be attributed to one important factor that 
DCNN can utilize the spatial structure in the 2D optical parameter maps whereas SVM 
cannot. Furthermore, in SVM, features need to be extracted from data manually which may 
affect the accuracy of classification, whereas DCNN can automatically learn features from 
data and has no such concerns. 
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5. Conclusion 
In summary, we have demonstrated a method for the diagnosis of lung squamous cell 
carcinoma by TI-DIC microscope and deep convolutional neural network. TI-DIC 
microscopy together with the scattering-phase theorem revealed that the optical parameters of 
cancerous lung tissue differ significantly from those of normal lung tissue. The scattering 
coefficient and the reduced scattering coefficient increase while the anisotropy factor 
decreases with lung cancer. A DCNN classifier has been developed to classify the tissue 
using either the DIC images or 2-D optical property maps of Sμ , '

Sμ  and g. The DCNN 

classifier with the optical property maps is found to exhibit high accuracy of 96%, 
significantly outperforming the same DCNN classifier on the DIC images. As a label-free 
modality applicable to fresh tissues, quantitative phase microscopy together with deep 
learning may emerge as a promising approach for in situ rapid cancer diagnosis. 
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